Autonomica Anycast Service

APTLD meeting
Kuala Lumpur, 18-24 May 2008

Nurani Nimpuno
Who is Autonomica / Netnod?

• Neutral, non-profit & independent organisation
 – Owned by the TU foundation
• Operator of i.root-servers.net
 – One of 13 root servers in the world
 – Currently 31 anycast instances globally
• TLD unicast & anycast slave service provider
 – Have provided production anycast services since 2003
• Operator of exchange points in Sweden
 – through Netnod IX
What is anycast?

• A technique that allows several (identical) servers on the Internet to share the same IP address
 – BGP directs packets to the topologically closest instance
 – Anycast shifts the redundancy management from the DNS layer to the routing layer

• Mitigates impact of DDoS attack
 – By localising the attack with an increased foot print
Redundancy

• Any important service should of course be redundant and robust
 – Can lead to very expensive and complicated machines with special "high-availability" design.
 • These things are usually very, very much more expensive than standard components

• In DNS this was part of the thinking from the outset
 – DNS protocol has provision for "redundancy" in the application layer
 • i.e. multiple name servers for the same "zone"
 – Therefore the general opinion for many years was that the redundancy needs of DNS was a solved problem
This is how we want to look at the Internet. A homogenous and nice cloud where everyone has connectivity with everyone else.
• Here it would be possible to achieve redundancy "locally" by a design that protects against component failures.
• But, it’s more complicated than that… huge variations in latency and connectivity between different locations on the network.
• Obvious solution to redundancy problem is to separate the authoritative servers as much as possible
 – different locations
 – different transit providers
 – different IP prefixes
 – different service providers
 – (different platforms)
 – etc
Design #2

- Obvious solution to redundancy problem is to separate the authoritative servers as much as possible
 - different locations
 - different transit providers
 - different IP prefixes
 - different service providers
 - (different platforms)
 - etc

- All this is obviously possible to achieve with "standard" DNS.
Design #3

- When is this redundancy not sufficient?
 - High perceived risk of DDOS attack
 - usually each "server" has only one connection to the network
 - this connection is quite easily filled up during an attack
 - Difficult to achieve sufficient geographic and topologic diversity with a smaller number of "ordinary" (unicast) servers
 - probably mostly a concern for zones with truly global usage like ".", "com", "in-addr.arpa", etc.
Anycast #1

- An advantage with anycast is that:
 - the number of servers and available bandwidth can be increased in a way that is invisible to the "DNS layer"
 - i.e. from a DNS perspective this is just one single server regardless of the number of physical machines and the aggregate amount of bandwidth and server capacity
Another advantage with anycast is:

- traffic is automatically "localized" to the closest instance of the service
- "selection of optimal server" is moved from "application" (DNS) to "transport" (routing) layer
- raises the barrier for a global attack significantly, since "DDOS armies" rarely are evenly distributed across the entire Internet
A third advantage with anycast is that the "service" is improved:

- lower latency (i.e. shorter distance and therefore shorter time delay from server to user)
- automatic fail-over on errors (i.e. if one "site" goes away for whatever reason the traffic will automatically be directed to the other sites)
- automatic load sharing
Anycast

- From "the outside" a constellation of anycast servers look exactly like a single server that is "multi-homed", i.e. connected to the Internet via multiple connections.
 - Multi-homing is "known technology"
 - usually ISPs are connected to each other in multiple places
- From "the inside" the main difference is that there usually is no internal connectivity between the different points of connection.
 - i.e. the servers are individual "embassies" rather than part of the connected "country"
Anycast Pros

- Pros
 - Better redundancy
 - Automatic fail-over
 - Automatic load sharing
 - Higher resistance to DDOS attacks
 - Lower latency
 - Short distance -> shorter delays
 - Lower jitter
 - Higher availability
 - Better odds in times of network partitioning
 - e.g. Taiwan earthquake
Anycast Cons

• Higher system complexity
 – (Usually a bad idea)
 – Need to weigh needs and cost

• Troubleshooting much more complex
 – Which server is causing problems?
 – How do we reach it?

• System and site design radically different for hardware on other side of planet compared to server room down the hall
Anycast of the DNS root servers

- The redundancy issue considered by the root server operators before the WTC attack 9/11 2001
 - Concerns that "anycast" would be considered "irresponsible"
- DDOS attack on DNS root name server system 2002 highlighted need for action
 - Anycast chosen as best available alternative
 - Agreed that initially only ‘F’ to experiment
 - in case of unforeseen consequences
 - Concluded to be responsible and well-functioning
 - several letters now actively deploying anycast
i.root sites
Autonomica TLD Anycast service

• Additional servers deployed at the anycast sites for TLD anycast service
 – To allow TLDs to take advantage of anycast
 – To help TLDs take advantage of the experience Autonomica has built up with anycast through i.root-servers.net
 – A way to do cost recovery for the installed hardware

• TLD anycast delivered of same high quality of service as for i.root-servers.net

• Autonomica co-wrote BCP for operation of Anycast Services (RFC 4786)
Fee model for TLD anycast

• Netnod / Autonomica is a non-profit organisation
 – Any surplus poured back into organisation
 • Research, testing
 • Improvement of services etc
 • Community participation, standards development
 – TLD anycast income helps fund the operation of i.root-servers.net
 • This way, those who mostly benefit the i.root-servers.net service contributes to the operation of the it
 – Fees not set to make a profit
 • Fees reduced over the board in 2008
 • As more TLDs come on-board, fees will continue to decrease
Current TLD anycast footprint
24 (27 shortly)

New sites underway in Perth, Colombo and Johannesburg
Autonomica anycast cloud

- The management infrastructure behind a commercial grade anycast cloud will be complicated (20+)
 - Sites need to have a good spread at a decent distance from each other
- Autonomica operates a mix of sites with great geographical and topological spread
 - Both at edges of Internet and a number of select core locations
Where are we now?

• A mature stable service
 – 100% uptime guarantee over 3 regions (EMEA 3, Asia 2, Americas 2)
 – ~17 TLDs
 • From small TLDs (<50k delegations) to several large TLDs (1M delegations)
 • With and without DNSSEC (.se)

• Growing requirements for more detailed stats
 – Stats per site & traffic analysis
 – Autonomica working on fine tuning stats tools to meet customer needs

• Growing privacy concerns
 – From TLDs & EU privacy legislation
 – Autonomica ensures the data isn’t leaked

• Growing interest in DNSSEC
 – Autonomica has vast experience in DNSSEC
DNSSEC

• Many false starts
 – Think we finally got it right

• Autonomica has provided DNSSEC production service since 2005
 – .SE was the first TLD to deploy DNSSEC
 – Provided more than 100,000,000,000 responses from signed zones

• Implementations tend to need even more false starts than protocols
 – We believe in cooperation and active contribution to the technical community & standards development
Do you need anycast?

• Evaluate your current risks, costs and benefits
 – DDos attacks
 • Low value, high visibility
 • High value, high visibility
 • High value, low visibility

• It’s hard to compare anycast services
 – Talk to your fellow ccTLDs about their experience
 – Look at footprint, operational experience, stability, additional services, cost, SLA etc.
Summary

• Global presence, Industrial scale
 – 24 sites (and growing)
 – 40+ M Resource Records
 – Authoritative DNS service for more than 100 zones (anycast + unicast)

• Extensive experience
 – Anycast production since 2003
 – TLD anycast provided at same QoS as i.root
 – Production DNSSEC since 2005
 – Active participation in technical community

• Non profit
 – TLD revenue contributes to the operations of i.root
 – Commitment to further lower prices as customer base grows
Terimah kasih

nurani@autonomica.se