Certificates and DNSSEC

Jay Daley .nz
Visiting a secure web site

- Browser connects
- Server sends X.509 certificate
- Browser compares data to web address
- Browser looks for signature of CA
 - If not then this is self-signed
- Browser checks local root certificates
- Browser continues automatically if
 - CA signature matches local root certificate
Two types of CA signature

- **Domain validated**
 - This certificate was supplied to the owner of this domain
 - Blue browser bar with domain name

- **Organisation validated**
 - The owner of this domain is who they say they are
 - Green browser bar with organisation name
Two related projects

1. Using the CERT record for TLS
 - Replacing domain-validatated certificates

2. TLDs becoming Certificate Authorities
 - Entering the organisation-validation market
Why?

- We want our TLDs as secure as possible
 - Protect reputation of our TLDs
 - Provide best service to our registrants
- CA market is failing to deliver
 - Less than 10% of web sites have protection
- Certificates are very expensive
 - Much more than cost of domain name
- In other protocols security is included
Certificates in DNS

- Seems obvious to many
- DNSSEC secures the channel
- CERT record already exists
- Change the process
 - Browser does not check CA signature
 - Gets CERT record and compares
- Replaces domain validated certificates
 - Organisation validation still useful product
CERT might not be enough

- Lots of CERT records under one domain?
- What order is it used?
 - Connect first, get X.509, get CERT, compare
 - Get CERT, connect, get X.509, compare
- Too much data? - use a hash instead:
 - domain CERT hash
 - hash.domain CERT ...
TLD certificate authorities

- Entering organisation validation market
- Validate registrant identity now
 - Are they who they say they are
 - CA signature confirms this
- Tight process link to domains
 - When domain transfer, certificate is revoked
 - Also when domain is cancelled
- Significant improvement over other CAs
Ways to enter the market

1. Root certificate in browsers
 - Expensive verification process (“webtrust”)
 - CNNIC already there (congratulations!)

2. Buy an intermediate certificate
 - Not many CAs will sell

3. Shared root certificate amongst TLDs
 - Each TLD uses an intermediate certificate
 - Big enough to force browsers to include us
Next steps

- Two subjects - need two mailing lists
- Certificates in DNS
 - Written to IETF area director
 - Waiting for response
- TLDs as Certificate Authorities
 - Written to ccNSO chair
 - Waiting for response
- Help always welcome!
Any questions?

jay@nzrs.net.nz

Or talk to Gihan from .lk